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Abstract

Biofuel made from conventional (e.g., maize (Zea mays L.)) and cellulosic crops (e.g., switchgrass (Panicum virga-
tum L.) and Miscanthus (Miscanthus 9 giganteus)) provides alternative energy to fossil fuels and has been consid-

ered to mitigate greenhouse gas emissions. To estimate the large-scale carbon and nitrogen dynamics of these

biofuel ecosystems, process-based models are needed. Here, we developed an agroecosystem model (AgTEM)

based on the Terrestrial Ecosystem Model for these ecosystems. The model was incorporated with biogeochemi-

cal and ecophysiological processes including crop phenology, biomass allocation, nitrification, and denitrifica-

tion, as well as agronomic management of irrigation and fertilization. It was used to estimate crop yield,

biomass, net carbon exchange, and nitrous oxide emissions at an ecosystem level. The model was first parame-
terized for maize, switchgrass, and Miscanthus ecosystems and then validated with field observation data. We

found that AgTEM well reproduces the annual net primary production and nitrous oxide fluxes of most sites,

with over 85% of total variation explained by the model. Local sensitivity analysis indicated that the model sen-

sitivity varies among different ecosystems. Net primary production of maize is sensitive to temperature, precipi-

tation, cloudiness, fertilizer, and irrigation and less sensitive to atmospheric CO2 concentrations. In contrast, the

net primary production of switchgrass and Miscanthus is most sensitive to temperature among all factors.

Nitrous oxide fluxes are sensitive to management in maize ecosystems, and sensitive to climate factors in cellu-

losic ecosystems. The developed model should help advance our understanding of carbon and nitrogen dynam-
ics of these biofuel ecosystems at both site and regional levels.
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Introduction

Bioenergy is becoming increasingly attractive to many

countries, but has sparked an intensive debate regard-

ing energy, economy, society, and environment. Biofuels

provide alternative energy to conventional fossil fuels.

However, producing biofuels requires a large amount

of biomass feedstocks, which may lead to land, water,

and nutrient competitions between bioenergy crops and

grain crops (Tilman et al., 2009; Pimentel et al., 2010),

causing problems such as food insecurity (Fargione

et al., 2010; Diffenbaugh et al., 2012). In addition, the

environmental impact of producing and using biofuel is

another concern to our society. In particular, to what

degree, biofuel feedstock producing, biofuel conversion,

and biofuel use will mitigate the climate change has

been a research focus (Farrell et al., 2006; Searchinger

et al., 2008; Melillo et al., 2009).

Biofuel crops can assimilate carbon dioxide (CO2)

from the atmosphere and accumulate C into biomass

and soils. Using fossil fuels, however, releases CO2.

From the perspective of C cycling, biofuels deserve

more credits for their C sequestration effect than fossil

fuels (Tilman et al., 2006; Clifton-Brown et al., 2007). To

date, many studies indicated that, substituting biofuels,

especially using cellulosic crops, for fossil fuels (e.g.,

gasoline) would mitigate GHG emissions, and therefore

benefit the environment (e.g., Farrell et al., 2006; Bessou

et al., 2011). However, looking beyond agroecosystems

and considering land availability and indirect land-use

change impacts due to bioenergy expansion, the biofuel

effects on the environment are not so clear. Besides

using existing cropland to grow crops for bioenergy

use, natural ecosystems (mainly forest and grassland)

might be converted to biofuel crops to produce biomass

feedstocks, which will inevitably cause land-use change.
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Studies have shown that by considering the GHG emis-

sions caused by indirect land-use change, the C savings

or C credit through developing biofuel is significantly

reduced or even became negative (Searchinger et al.,

2008; Melillo et al., 2009). The discrepancies among dif-

ferent studies are due to a number of uncertainty

sources, including the definition of the process of inter-

est, system boundaries of the life cycle of biofuel

production, understanding of biogeochemical or physio-

logical mechanisms, data assimilation, and methods

applied. These uncertainties are unavoidable when com-

plex systems and human behavior are included in the

carbon sink and source analysis of biofuel development

and use (Fargione et al., 2010). The high degree of

uncertainty highlights the necessity of further research

on large-scale bioenergy development.

To estimate regional GHG emissions of land ecosys-

tems, biogeochemical models that represent the C

and N processes and dynamics under changing environ-

mental conditions were used (McGuire et al., 2001;

Surendran Nair et al., 2012). These models are either

empirically based or mechanistically based. Using data

from field observations, empirical models represent rela-

tionships between a dependent variable (e.g., biomass

yield, CO2 emission) and independent variables regard-

ing climate, soil, and management (e.g., Heaton et al.,

2004; Jager et al., 2010). This approach is relatively sim-

ple but also less accurate as it does not include the bio-

geochemical and physical processes of ecosystems. In

contrast, most process-based models used to quantify

the C and N budget of bioenergy ecosystems have been

derived from models originally developed for natural

ecosystems (Kucharik, 2003; Bondeau et al., 2007; Di Vit-

torio et al., 2010). These models incorporated with agro-

ecosystem processes can simulate biomass accumulation

and allocation as well as C and N dynamics of agroe-

cosytems. For example, Agro-IBIS was developed by

taking advantage of the mechanistic nature of a well-

tested model, the Integrated BIosphere Simulator (IBIS),

which simulates interactions among soil, plant, and the

atmosphere. The Agro-IBIS has been used to simulate

maize yield (Kucharik, 2003) and cellulosic biomass pro-

duction (Vanloocke et al., 2010). Similarly, Agro-BGC is

a modified version of the Biome-BGC ecosystem model,

with processes added to simulate C4 perennial grass

functionality and agricultural practices (Di Vittorio

et al., 2010). Another example is LPJml, a model for

managed land. It was developed based on the well-

established Lund–Potsdam–Jena–DGVM. The LPJml can

simulate crop yield and C balance (Bondeau et al., 2007).

Some species-specific models, such as ALMANAC

(Kiniry et al., 1992; for switchgrass and Miscanthus), AP-

SIM (Keating et al., 1999; for sugarcane), MISCANMOD

and MISCANFOR (Clifton-Brown et al., 2004; Hastings

et al., 2009, for Miscanthus) were also developed to simu-

late crop growth. These models may have diverse struc-

tures and use different algorithms to describe the same

biogeochemical process, but all of them can be used to

simulate crop biomass production and some can also

simulate C and N dynamics (e.g., Agro-BGC, LPJml).

The Terrestrial Ecosystem Model (TEM) is a global-

scale biogeochemical model, among the most-used eco-

system models for estimating C, N, and water dynamics

of terrestrial ecosystems (e.g., McGuire et al., 1992; Zhu-

ang et al., 2003, 2013). Although many efforts were made

toward modifying TEM for agricultural ecosystems, the

crop physiology and agroecosystem processes have not

been explicitly considered to date (McGuire et al., 2001;

Felzer et al., 2004; Melillo et al., 2009). Here, we develop

an agricultural version of TEM (AgTEM) to explicitly

model the C and N dynamics of agroecosystems.

AgTEM mainly incorporated two sets of processes

that are related to agricultural ecosystems: one is on C

accumulation and allocation, and the other is on N

cycling by introducing nitrification and denitrification

processes in soils. In TEM, total C sequestered through

photosynthesis is allocated into two major pools of veg-

etation and soil of natural ecosystems. For agricultural

ecosystems, photosynthesis, phenological development,

and biomass allocation are crucial for determining eco-

system C fluxes and pools. In addition, agricultural

management (e.g., fertilization and irrigation) affects

crop development and therefore was considered in

AgTEM. For agroecosystems, the N input from outside

the ecosystem significantly affects crop N uptake, soil N

availability, and the whole N cycle in a plant–soil–

atmosphere system. Thus, special attention was paid to

the N dynamics in crop soils and the interactions

between soil and crop plants in AgTEM.

Materials and methods

Based on TEM, this study developed an agricultural ecosystem

model (AgTEM) to simulate the C and N dynamics of crop eco-

systems. The site-level observational data of C and N fluxes

and pools were used to test the model performance in simulat-

ing net primary production (NPP) and nitrous oxide (N2O)

emissions. The model sensitivity responding to major input

variables was also analyzed. In a companion study, we exam-

ined potential N2O emissions from bioenergy ecosystems using

the model, as presented in Qin et al. (2013). Below, we first

introduce the TEM model, and then detail how AgTEM is

developed, followed by descriptions on model parameteriza-

tion, validation, and sensitivity analysis.

Terrestrial Ecosystem Model

TEM estimates C and N fluxes and pool sizes of ecosystems at a

monthly time step and a given spatial resolution (e.g., 0.5°
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latitude by 0.5° longitude) using spatially referenced information

on climate, elevation, soil, vegetation, and water availability, as

well as soil- and vegetation-specific parameters. TEM was first

documented and applied for regional estimates in the early 1990s

(Raich et al., 1991; McGuire et al., 1992), and several major

improvements have been made during the past two decades as a

result of advance of ecosystem understanding and available com-

puting resources (e.g., McGuire et al., 2001; Zhuang et al., 2003;

Felzer et al., 2004). Equilibrium, as well as transient types of

simulations, was introduced to TEM in the late 1990s to early

2000s, and inherited thereafter in the later versions. New

modules, such as splitting N pools, ozone effects, and soil

thermal and hydrological models, were incorporated into TEM

to better understand terrestrial C and N dynamics under chang-

ing environmental conditions (Zhuang et al., 2002, 2003; Felzer

et al., 2004, 2009).

Many efforts have been put into improving understanding of

natural ecosystem processes. Managed ecosystems (e.g., agricul-

tural cropland), however, were less studied using TEM. To

understand the agricultural ecosystem C and N dynamics, some

progress has been made toward modeling land-use change and

cropping effects (McGuire et al., 2001; Felzer et al., 2004; Melillo

et al., 2009). However, a significant compromise in earlier ver-

sions of TEM for modeling agricultural ecosystems was that crop

ecosystems were parameterized as grassland ecosystem (e.g.,

Felzer et al., 2004) (Table 1). Nitrogen oxides (NOX) emitted

from agroecosystems, particularly in fertilized croplands, were

not included or not mechanistically modeled in TEM (Table 1).

In ecosystem models, NPP is the difference between gross

primary production (GPP) and autotrophic respiration (RA). It

represents the biomass produced by plants and is used to

estimate agricultural yield of the agroecosystem (Hicke et al.,

2004).

AgTEM development

AgTEM was developed to estimate C and N dynamics of

bioenergy crop ecosystems (namely, maize, switchgrass and

Miscanthus) at a daily time step and at any given spatial res-

olution. In AgTEM, the algorithms of modeling C and N

fluxes and pool sizes are inherited from TEM. A majority of

the algorithms describing ecosystem biogeochemical pro-

cesses in TEM are still applicable in agroecosystems

(Table 1). Similar to TEM, five differential equations were

used to govern the dynamics of state variables and fluxes

(Raich et al., 1991):

dCV

dt
¼ GPPt � RAt � LCtð�HCtÞ ð1Þ

dNV

dt
¼ NUPTAKEt � LNTð�HNtÞ ð2Þ

dCS

dt
¼ LCt � RHtðþRCtÞ ð3Þ

dNS

dt
¼ LNt �NETNMINtðþRNtÞ ð4Þ

dNav

dt
¼ NINPUTt þNETNMINt �NLOSTt �NUPTAKEt; ð5Þ

where CV, NV, CS, NS, and Nav are pools of vegetation C, vege-

tation N, soil C, soil N, and available N, respectively, deter-

mined by corresponding C and N fluxes (see acronyms in

Table 2). The terms in parentheses of Eqns (1) to (4) refer to

biomass harvest (H) and return (R) in agroecosystems, which

were not included in earlier version of TEM for natural ecosys-

tems. In these equations, t refers to the time step used for com-

putation. To assure stability in the integration over time, 4–5th

order Runge–Kutta integration procedure (Cheney & Kincaid,

1985) or the Euler method (Atkinson, 1989; Butcher, 2008) can

be used for different time steps. In this and the companion

studies (Qin et al., 2013), Euler method was used because of its

lower computational cost. Other major modifications and new

algorithms in AgTEM include temperature effects on GPP, crop

phenological process and biomass accumulation, agricultural

management, as well as soil N nitrification and denitrification

(Table 1). Below, we detail the development.

GPP. Temperature effects on GPP are modeled in TEM as a

multiplier on potential GPP utilizing minimum temperature,

maximum temperature, and optimum temperature for plant

photosynthesis (Raich et al., 1991). For each time step, the

temperature multiplier on GPP (TEMP) is modeled as follows:

TEMP¼

0; ðTair\TminÞ
ðTair�TminÞðTair�TmaxÞ

ðTair�TminÞðTair�TmaxÞ�ðTair�ToptminÞ2 ; ðTmin\Tair\ToptminÞ
1:0; ðToptmin\Tair\ToptmaxÞ

ðTair�TminÞðTair�TmaxÞ
ðTair�TminÞðTair�TmaxÞ�ðTair�ToptmaxÞ2 ; ðToptmax\Tair\TmaxÞ
0; ðTair[TmaxÞ

8>>>>>><
>>>>>>:

;

ð6Þ

where Tair, Tmin, Toptmin, Toptmax, and Tmax are parameters of

transient, minimum, maximum, minimum optimum, and maxi-

mum optimum air temperatures, respectively. These parame-

ters are crop-specific in AgTEM (Table 3).

Phenology. In TEM, plant phenology was empirically simu-

lated using the estimated evapotranspiration and photosyn-

thetic capacity to describe relative changes of mature vegetation

(Raich et al., 1991). In AgTEM, however, crop phenology

describing crop growth stages can either be imported from his-

torical observational data or modeled according to a crop’s

response to air temperature. Growing degree day (GDD), a

measure of heat accumulation, is used to predict plant develop-

ment rates (Felzer et al., 2004; Deryng et al., 2011). Cumulative

GDD is modeled as a function of daily temperature:

GDD ¼
X

maxð0;minðTair;TceilÞ � TbaseÞ; ð7Þ

where Tbase and Tceil are base and ceiling temperature parame-

ters, defined as lower and upper temperature thresholds for

the process of interest, respectively. These parameters vary

among species and possibly cultivars (McMaster & Wilhelm,

1997). In AgTEM (Table 4), GDD are used to predict crop emer-

gence and maturity, using crop-specific threshold parameters.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755
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Biomass allocation. During the growth period between crop

emergence and maturity, plants use solar energy to capture

atmospheric CO2 through photosynthesis. The total net chemi-

cal energy captured by plant, or cumulative NPP, forms the

total biomass of a given ecosystem. In agroecosystems, crop

grain (e.g., maize) or biomass (e.g., switchgrass) can then be

harvested and removed from the ecosystems. Part of the bio-

mass leftover such as residues and dead roots will be returned

to the soil C and N cycling. In AgTEM, biomass of interest

(YLD, e.g., yield of grain or harvestable biomass) is modeled

empirically based on total NPP (NPPtot) following Hicke &

Lobell (2004) and Monfreda et al. (2008):

YLD ¼ NPPtotdhi
dcDhi

; ð8Þ

where dhi, dc, Dhi are parameters for determining the proportion

of NPP being harvested, the C content in the dry matter, and

the dry proportion of YLD, respectively (Table 5). For the grain

harvest of food crops (e.g., maize), dhi is a function of the har-

vest index and a ratio of aboveground-to-belowground biomass

(Rhi):

dhi ¼ 1� 1

Rhi þ 1

� �
HI; ð9Þ

where HI refers to the harvest index, measuring the proportion

of total aboveground biological yield allocated to the economic

yield of the crop (Table 5). Rhi, also known as ‘shoot-to-root

ratio,’ indicates the biomass allocation to aboveground and

belowground and is assumed to be constant for a specific crop

(Hicke & Lobell, 2004). For crops used for biomass harvest pur-

poses, HI needs to be slightly modified such that harvestable

biomass instead of grain can be accounted for in Eqn (9).

The net carbon exchange between the terrestrial biosphere

and the atmosphere is described with Eqn (10) in AgTEM:

NCE ¼ NPP� RH � EP; ð10Þ

where the net carbon exchange (NCE) is the remaining C flux

from NPP, after heterotrophic respiration (i.e., decomposition)

(RH) and decomposition (EP) of products harvested from eco-

systems for human use (e.g., harvested for YLD) (McGuire

et al., 2001). A positive NCE indicates ecosystem acting as a

CO2 sink whereas a negative NCE means that ecosystem is a

CO2 source.

Management. Agricultural management practices, such as irri-

gation, fertilization, rotation, and cultivar selection, affect mass

and energy input and output in agroecosystems. However, the

original TEM designated for natural ecosystems has not consid-

ered these factors (e.g., McGuire et al., 1992). Using the modi-

fied TEM to simulate agroecosystem has some difficulties in

modeling C-N-management interactions and integrating time-

varying spatially explicit data into regional simulations (e.g.,

Table 2 Variables used in AgTEM to govern C and N fluxes

and pools

Variable Definition Unit

State variables

CS C in soil and detritus g C m�2

CV C in vegetation g C m�2

Nav Available N in

soil and detritus

g N m�2

NS Organic N in soil

and detritus

g N m�2

NV N in vegetation g N m�2

Carbon fluxes

EP Decomposition of

harvested products

g C m�2 day�1

GPP Gross primary production g C m�2 day�1

HC C in harvested products g C m�2 day�1

LC C in litterfall g C m�2 day�1

NCE Net carbon exchange g C m�2 day�1

NPP Net primary production g C m�2 day�1

RA Autotrophic respiration g C m�2 day�1

RC C in returned biomass g C m�2 day�1

RH Heterotrophic respiration g C m�2 day�1

Nitrogen fluxes

LN N in litterfall g N m�2 day�1

NETNMIN Net rate of soil

N mineralization

g N m�2 day�1

NINPUT N inputs from

outside ecosystem

g N m�2 day�1

NLOST N losses from ecosystem g N m�2 day�1

NUPTAKE N uptake by vegetation gN m�2 day�1

RN N in returned biomass g N m�2 day�1

Table 3 Minimum, maximum, and optimum temperatures for plant photosynthesis

TEM

version

Vegetation/

Crop type

Tmin Toptmin Toptmax Tmax
*

Notes and references(°C)

TEM Grass 0 13.0 32.7 38.0 In early TEM (e.g., TEM4.2, 4.3), crops were parameterized

under grass vegetation type (McGuire et al., 2001; Felzer et al.,

2004)

AgTEM Maize 0 15.0 31.0 41.0 In AgTEM2.0, crop-specific sets instead of single set parameters

were used for different crop type (Bird et al., 1977; Kim &

Reddy, 2004; Sage & Kubien, 2007)

Switchgrass 0 13.0 33.0 41.0

Miscanthus 0 13.0 33.0 41.0

*Tmin, Toptmin, Toptmax, and Tmax are minimum, minimum optimum, maximum optimum and maximum temperatures, respectively.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755
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Felzer et al., 2004) (Table 1). In contrast, AgTEM includes two

major management practices of irrigation and N fertilization.

Besides precipitation percolation, irrigation is considered as an

additional direct water input into the soils, which is modeled

based on Zhuang et al. (2002). N fertilizer, mainly in the form

of NH4
+-N and NO3

�-N, enters soils, as nutrients to support

crop biomass accumulation and soil microbial activities. The N

fertilization implementation in AgTEM is modeled as N input

from sources outside the ecosystem, affecting NPP, N dynam-

ics and C–N interactions, which were described in Raich et al.

(1991) and McGuire et al. (1992). N fertilizers also affect nitrifi-

cation and denitrification processes in AgTEM.

Nitrification and denitrification. Atmospheric nitrogen enters

agroecosystems mainly through atmospheric deposition (e.g.,

lightning and rainfall), synthetic N fertilizer application, man-

ure application, and litter fall. These N inputs are further min-

eralized into soil available N such as NH4
+ and NO3

�. The

gaseous NOX emissions from soils, mostly in forms of N2, nitric

oxide (NO) and N2O, are mainly produced through nitrifica-

tion and denitrification processes (Fig. 1). Nitrification

describes the process of the biological oxidation of ammonia

with oxygen into nitrite and nitrate. Denitrification represents a

process of nitrate reduction that eventually produces N2 and

N2O (Fig. 1).

In AgTEM, NOX emissions are simulated according to the

amount of soil inorganic N, determined by the microenviron-

ment depending on temperature, soil pH, soil water content,

and soil biological activity (Fig. S1, S2). Algorithms describing

nitrification and denitrification processes from other studies

(e.g., Bradbury et al., 1993; Henault et al., 2005) and models

(EOSSE, Smith et al., 2010; Bell et al., 2012) were adapted. Three

major NOX fluxes (namely, N2O, NO, and also N2) are included

in AgTEM. NOX (NOX) is the total NO and N2O emissions from

nitrification and N2 and N2O emissions from denitrification:

NHþ
4 )NOntf

N2Ontf

NO�
3 )

N2dtf
N2Odtf

j ) N2O

���� ) NOX; ð11Þ

where N2Ontf, NOntf, N2Odtf, and N2dtf indicate fluxes of N2O

from nitrification, NO from nitrification, N2O from denitrifica-

tion and N2 from denitrification, respectively (Table S1). Total

N2O fluxes (N2O) account for both N2Ontf and N2Odtf (more

details on nitrification and denitrification modeling can be

found in Supporting Information).

Model parameterization and site-level validation

There are a number of constant, vegetation-specific, or soil-

specific parameters in AgTEM. Most of them have been

defined and determined in earlier studies (e.g. Raich et al.,

1991; McGuire et al., 1992; Zhuang et al., 2003). Some vegeta-

tion-specific parameters, such as those used to estimate C and

N dynamics in maize, switchgrass, and Miscanthus ecosys-

tems, were determined via calibration of the model driven

with climate data using observed data of C and N fluxes and

pool sizes (Qin et al., 2011, 2012). To determine biomass

allocation and biomass-yield conversion, crop-specific parame-

ters used in Eqns (8) and (9) were defined according to previ-

ous researches (Table 5). Most parameters used in soil N

Table 4 Parameters used to determine growing degree days and simulate crop phenology

Vegetation/

Crop type

Tbase Tceil
* GDDemg GDDmat

†

Notes and references(°C) (°C day)

Grass – – – – Not incorporated in TEM4.2 and earlier version (McGuire et al., 2001)

Crop 5 – 300 2000 Used in modified TEM4.3 for simulating agricultural activities

(Felzer et al., 2004)

Maize 10 (5–15)‡ 30 120 1600 Used in AgTEM according to Bondeau et al. (2007) and Nielsen (2010)

Switchgrass 10 (10–12)‡ 30 300 2300 Used in AgTEM according to models such as ALMANAC

(Kiniry et al., 1992)

Miscanthus 10 30 300 2500 Used in AgTEM according to models such as MISCANMOD

(Clifton-Brown et al., 2004)

*Tbase and Tceil are base and threshold temperatures for calculating vegetation- and/or crop-specific GDDs, respectively.

†GDDemg and GDDmat are GDD heat unites required for crop emergence and maturity, respectively.

‡Value used for each crop species, but subject to change for different varieties (as in parentheses).

Table 5 Values of crop-specific parameters used for biomass

harvest in AgTEM

Crop type dc
* Dhi

† Rhi
‡

HI§

Grain Biomass

Maize 0.45 0.85 0.85/0.15 0.53 –

Switchgrass 0.45 0.90 0.58/0.42 – 0.90

Miscanthus 0.45 0.90 0.71/0.29 – 0.90

*dc is the carbon content in the dry matter.

†Dhi is the dry proportion of YLD.

‡Rhi is parameterized as aboveground biomass/belowground

biomass here.

§HI refers to maize grain harvested (grain) or the proportion of

aboveground biomass harvested (biomass); no biomass har-

vested for maize at site level and no grain available for switch-

grass and Miscanthus. Data sources and references: Prince et al.,

2001; Hicke & Lobell, 2004; Mosier et al., 2006; Meyer et al.,

2010.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755
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nitrification and denitrification can be found in earlier studies

(Table S2).

Validation investigates models’ performance to repro-

duce the observations from a system within its domain of

application (Rykiel, 1996). The model simulations are com-

pared with observed data, and certain criteria are used to

determine model performance (Smith et al., 1997). In total, 29

field experiment sites, including 82 site-treatment (i.e., N

input level) observational data sets, were organized for vali-

dating AgTEM across the United States. These sites cover

three bioenergy ecosystems including maize, switchgrass, and

Miscanthus (Table 6). For maize, only continuous maize crop-

ping systems were included in the validation. Data of bio-

mass yield (e.g., maize grain, cellulosic biomass) and annual

N2O fluxes were used for model and data comparison. Site

location, agricultural management, soil properties, and daily

climate conditions were used for model simulations. Site

annual N2O flux estimates were based on observations during

the crop growing season, and accumulated through all

growth stages. Possible N2O fluxes from the nongrowing sea-

son were not estimated. For site-level data collection and pro-

cessing (e.g., NPP calculation) procedures, information can be

found in earlier studies (Qin et al., 2011, 2012). The climate

data of air temperature, precipitation, cloudiness were

obtained from the ECMWF (European Centre for Medium-

Range Weather Forecasts) Data Server (www.ecmwf.int). For

each site-treatment, AgTEM was run for multiple years, using

forcing data describing site location, elevation, climate, soil,

vegetation, and management. NPP, biomass of interest (i.e.,

maize grain, harvestable biomass), and N2O flux were ana-

lyzed. For all three crops, modeled NPP and N2O were then

compared with the observed data.

For comparison, the modeled data were plotted against

observations, and a linear regression with a zero intercept was

computed to estimate the slope and coefficient of determination

(R2). The closer the regression slope to 1, the better the model

fits to the observed data. R2 (0 ≤ R2 ≤ 1) indicates the pattern

of simulated and observed values (Smith et al., 1997; Huang

et al., 2009). The root mean square error (RMSE) and model

efficiency (EF) (Loague & Green, 1991) were also reported to

show the discrepancies between simulations and observations.

We also estimated the N2O fluxes following the Intergovern-

mental Panel on Climate Change (IPCC) N-input approach

(Tier 1) (De Klein et al., 2006). The annual direct soil N2O emis-

sions were empirically calculated as a factor (0.01) of total N

input into soils, including N from fertilizer, manure, water,

and residue. Water N was not accounted for in our study,

partly because of its scarcity compared to other N sources and

also due to a lack of data. Model performance was evaluated in

a similar manner to AgTEM.

Model sensitivity analysis

A sensitivity analysis studies the response of the model to dif-

ferent sources of variance in input data (e.g., parameters, forc-

ing data) (Loucks et al., 2005). To study AgTEM sensitivity,

three sites with the most accessible information, one for each

ecosystem type (Table 6), were selected. Six major input vari-

ables representing the climate, management, and CO2 condi-

tions were included in the sensitivity analysis. For a simplified

general form of AgTEM Eqn (12), an output corresponding to

change in input variables can be written as Eqn (13):

Y ¼ fðX1; . . .;X6Þ ð12Þ

Fig. 1 N cycling among the atmosphere, biosphere, and pedosphere. Major processes were modeled in AgTEM. SOM, soil organic

matter; N2, nitrogen; NH3, ammonia; NOX, nitrogen oxides; N2O, nitrous oxide; NO, nitric oxide.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755
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EðYj
iÞ ¼ EXi ðYjX0

i Þ; ð13Þ

where Xi denotes the i-th input variables, and X1 to X6 are

daily air temperature (TAIR), daily precipitation (PREC), daily

cloudiness (CLDS), daily N fertilizer application (FTLZ), daily

irrigation (IRGT), and annual atmospheric CO2 concentrations

(KCO2), respectively. Y indicates the model output whose sen-

sitivity to environment will be evaluated, and here j can refer

to NPP and N2O fluxes in AgTEM. Yi corresponds to input Xi.

As for Eqn (13), ðYjX0
i Þ is the model simulation under changing

variable Xi, while other variables are fixed ðX0
i Þ. Therefore, the

change of model output due to a given changing input can be

expressed as follows:

VðYiÞ ¼ EðYiÞ
EðY0Þ � 1; ð14Þ

where V(Yi) is the change of output Y responding to changing

input Xi, relative to a reference scenario where all input vari-

ables are fixed (as in Y0). In this study, all input forcing data

collected for each site were used for the reference scenario. In

particular, the N fertilizer application rate in the reference sce-

nario was set as 134 kg N ha�1 for maize and 56 kg N ha�1 for

switchgrass and Miscanthus. A certain perturbation was exerted

to the forcing data to represent input changes:

XTC ¼ðTAIR PREC CLDS FTLZ IRGT KCO2 ÞT
ð�1 0 þ1 Þ ð15Þ

As in Eqn (15), for each variable X, negative (�1) and posi-

tive (+1) changes (C) were added on to the reference (0) forcing

data to calculate output sensitivity to increases and decreases

of inputs, respectively. For each model simulation regarding

the changing variable X, NPP and N2O outputs were analyzed,

and a decadal average V(Y) was reported to demonstrate the

magnitude of sensitivity for a given Y.

Results

Site-level biomass production and nitrous oxide emissions

The field experiment sites (i.e., maize, switchgrass, and

Miscanthus) selected for model validation spread across

a majority portion of the maize-producing areas in the

conterminous United States, covering a variety of cli-

mate zones such as semiarid steppe climate, humid con-

tinental climate, and humid subtropical climate (Fig. 2a).

Of the 82 site-treatment datasets collected from 29 sites,

65 of them contain N2O observational data (maize: 57,

switchgrass: 4, Miscanthus: 4), and 62 have NPP data

(maize: 45, switchgrass: 10, Miscanthus: 7). These data

were used as dependent variables for comparisons

between model simulations and observations. N input at

the site-level ranges from 0 to 310 kg N ha�1 for maize

and 0 to 156 kg N ha�1 for switchgrass and Miscanthus

(Table 6), representing a wide diversity of N treatments.

AgTEM simulations of crop NPP are consistent with

the observations (Fig. 2b). The observed NPP of maize

has an average of 680 g C m�2, with a range from 287

to 1400 g C m�2. Crop productivity tends to increase

with increasing N application. Observed NPP of

switchgrass and Miscanthus are relatively higher than

maize, about 850 and 1400 g C m�2, respectively. How-

ever, the biomass production is not necessarily related

to the N input level. For all sites (n = 62), the regres-

sion between modeled and observed NPP yields an R2

of 0.74 with a slope of 0.95 (P < 0.001). However, two

observations (Fig. 2b, circled) evidently deviate from

the 1 : 1 line, showing an underestimation in AgTEM.

These two observations of Miscanthus from central and

southern Illinois show an extremely high biomass pro-

duction (Heaton et al., 2008), with an average annual

NPP flux of about 2150 g C m�2, about three times the

average NPP of the rest of the 60 observations. The

peak biomass production may be because of favorable

climate, management, and proper harvest time during

the experiment time (Heaton et al., 2008). To better

illustrate the model performance at the majority of

sites, observations beyond the range of [mean � 2SD

(standard deviation)] were removed for the compari-

son. For these sites within 2SD, the indices indicate

that fitness of simulations is improved. The slope of

regression approximates 1, with a R2 of 0.85; the RMSE

decreases from 0.20 to 0.14 and EF increases from 0.83

to 0.88 (Fig. 2b).

N2O fluxes from maize, switchgrass, and Miscanthus

were modeled using both AgTEM and an IPCC empiri-

cal model. Observations from maize ecosystems show

that N2O emitted from croplands with high N applica-

tion rates are mostly larger than those with lower N

input levels (Fig. 2c). As for all sites (n = 65), the aver-

age N2O flux is 1.8 kg N ha�1 (1 kg N ha�1 = 0.1 g

N m�2), with the maximum flux reaching 13.5 kg

N ha�1 observed in a continuous maize field in Indiana

(Omonode et al., 2011). Normally, N fertilizers are not

applied to switchgrass and Miscanthus, and the highest

N application rate tested in the field experiments is

156 kg N ha�1. N2O emissions from soils of these cellu-

losic crops are comparable with those from maize crop-

land under similar N input levels (Fig. 2c). The model

simulations using AgTEM well estimate the N2O

change, at least for fluxes within a reasonable range

(e.g., less than 5.0 kg N ha�1). The comparison between

modeled and observed N2O results in a slope of 0.83

and R2 of 0.78, for all sites. By moving two maize obser-

vations outside the 2SD range (Fig. 2c, circled), one

from Stockbridge, MI (Hoben et al., 2011) and the other

from West Lafayette, IN (Omonode et al., 2011), the

regression generates a higher slope of 0.94 with a

greater R2 of 0.86. The RMSE declined from 0.37 to 0.25,
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and EF slightly improved from 0.81 to 0.88. The discrep-

ancies between modeled and observed fluxes are partly

explained by high soil organic matter content (Hoben

et al., 2011). Possible maize residues and residual

mineral N gains from N fixation by the previous crop

(Omonode et al., 2011) contributed to N2O emissions,

while AgTEM did not capture these changes.

The IPCC approach relates N2O emissions solely to N

input, such as N fertilizer and residue, but fails to con-

sider environmental factors that also significantly affect

N dynamics (Grassini & Cassman, 2012). In our study,

the predictions from the IPCC model capture a propor-

tion of the observations, with more persuasive indices

supporting the fitness for sites within 2SD than for all

available sites (Fig. 2d). However, high variances still

existed; the RMSE and EF were 0.66 and 0.41, respec-

tively, for all sites (n = 65), and 0.53 and 0.46, respec-

tively, for limited sites (n = 63). The emission factor of

0.01 may not fit all ecosystems. Based on the observa-

tions collected in this study, the emission factor of N2O

for maize is 0.010 (R2 = 0.44, P < 0.001, n = 63) or 0.013

(R2 = 0.33, P < 0.001, n = 65); for switchgrass, it is 0.013

Fig. 2 Modeled vs. observed NPP and N2O fluxes in bioenergy ecosystems at site-level. (a) Maize, switchgrass, and Miscanthus sites

cover a majority of the maize-producing areas (shadowed in deep green) across the conterminous United States (Monfreda et al.,

2008), (b) AgTEM modeled vs. observed NPP, with illustration of NPP change over N input level in the upper right inset, (c) AgTEM

modeled vs. observed N2O, with illustration of N2O change over N input level in the upper right inset, (d) IPCC modeled vs.

observed N2O.
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(R2 = 0.62, P = 0.2, n = 4) and for Miscanthus it is 0.016

(R2 = 0.56, P = 0.2, n = 4).

Compared with the IPCC empirical model in most

cases, AgTEM is a better tool to estimate N2O fluxes

from maize, switchgrass and Miscanthus ecosystems.

The IPCC approach is a good substitute when process-

based models are not used due to lacking data or when

the estimation accuracy requirement is not high.

AgTEM will work under more complicated circum-

stances, especially when N2O accounting has higher

accuracy requirement while the environment conditions

are complex. For example, regional, national, or even

global large-scale estimates require process-based

modeling for better accounting for the complex climate–

soil–atmosphere interactions (Bondeau et al., 2007; Del

Grosso et al., 2010).

Model sensitivity to environmental and management
factors

A sensitivity analysis quantifies the impact of changes

in input data on model outputs. Usually, only a subset

of input variables dominates outputs in process-based

models (Loucks et al., 2005). To identify those input

variables, AgTEM simulations were conducted by vary-

ing six input variables at three separate locations, one

site for each type of crop. The sensitivity of NPP and

N2O in terms of percentage change relative to the refer-

ence simulation is reported separately for maize, switch-

grass, and Miscanthus.

In AgTEM, climate, soil and CO2 conditions, and agri-

cultural management including irrigation and fertiliza-

tion which determine photosynthesis and autotrophic

respiration will ultimately affect NPP. The sensitivity

analysis shows that the perturbations to input variables

affect NPP for all three crops. However, the magnitudes

of sensitivity differ among variables and crops (Fig. 3).

For all crops, KCO2, TAIR, PREC, FTLZ, and IRGT

(except no IRGT available for cellulosic crops) have

positive effects on NPP, where a positive change of

input results in a positive change of output, while CLDS

has a negative effect on NPP. All crops are comparably

sensitive to CO2 and air temperature, but cellulosic

crops (i.e., switchgrass and Miscanthus) are much less

sensitive than maize to precipitation, cloudiness, and

fertilizer application (Fig. 3). In maize ecosystems, NPP

is most sensitive to air temperature, where about 20% of

the NPP increase was due to a 10% temperature

increase and a 16% NPP decrease was due to a 10%

temperature decrease, and least sensitive to CO2, where

only about a 7% NPP change was due to a 10% CO2

input change (Fig. 3a). In switchgrass and Miscanthus

ecosystems, air temperature is still the dominant factor

affecting NPP, and a 10% input change caused a 20%

NPP change. However, NPP responses are much less

noticeable in response to changes in precipitation,

cloudiness, and fertilization, only a 1-5% change

resulted from a 10% input change (Fig. 3b and c).

These responses may be partly explained by the fact

that environmental and management factors directly or

indirectly affect the plant photosynthesis and respira-

tion. The atmospheric CO2 positively affects GPP pro-

duction via photosynthesis. Elevated CO2 significantly

increases leaf photosynthetic CO2 uptake rate (Leakey

et al., 2004; Oliver et al., 2009). Higher temperature

means a longer growth period and higher GDD, which
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may benefit crops, especially those grown in the rela-

tively colder areas. An example is the selected switch-

grass site in the central Upper Peninsula of Michigan,

USA. (46.55°N, 86.92°W, 266.1 m a.s.l.) (Niki�ema et al.,

2011). Abundant but not excessive precipitation can pro-

tect crops from drought, providing sufficient water for

evaporation and transpiration. Lower cloudiness allows

more solar radiation to be absorbed by plants, and

therefore more energy to be stored in vegetation. Favor-

able management practices could always benefit crop

production, for example, irrigation for water inputs and

fertilization for nutrient inputs. However, switchgrass

and Miscanthus seemed to benefit less from increased

water and nutrient inputs or less harmed due to less

input (Fig. 3b and c). This is because that these biofuel

crops have a relatively higher efficiency for using solar

radiation, water, and nutrients (e.g., N) compared with

maize. Studies reported that switchgrass and Miscanthus

could intercept large proportions of the photosyntheti-

cally active radiation (Heaton et al., 2008), use much less

irrigation than food crops (Fargione et al., 2010), and

have no or only slight responses to N fertilization

(Lewandowski et al., 2003).

Among the six factors, CO2 generally has the least

impact on N2O output in AgTEM among all three eco-

systems (Fig. 4). N2O output is negatively related to

CO2 input; less than a 0.5% N2O flux change was esti-

mated in response to a 10% CO2 change. For maize eco-

systems, the model is more sensitive to fertilization and

irrigation, and less responsive to climate factors

(Fig. 4a). For switchgrass and Miscanthus ecosystems,

the model shows a much higher sensitivity to climate

factors than management. A 4–9% change in N2O is

observed as a result of a 10% change of temperature or

precipitation, and a 2–3.5% N2O change has occurred in

response to a cloudiness change (Fig. 4b and c). Low N

input level (56 kg N ha�1) partly explains the insensitiv-

ity of modeling response to fertilization.

Additional tests using �20% input change confirmed

the pattern of local responses of NPP (Fig. S3) and N2O

(Fig. S4) to input perturbations. However, the relative

output changes vary among different input variables

and ecosystems. It should be noted that the local sensi-

tivity analysis here is not for quantifying the regional

impacts of input on outputs. The sensitivity results may

change due to change of input data and the sites for

conducting the analysis. A global sensitivity analysis at

regional levels would be needed to allow full explora-

tion of the input space, accounting for high-dimension-

ality, interactions, and spatial heterogeneity. However,

the global sensitivity analysis requires more information

to build probability distributions for the input variables

and parameters and expects higher computational com-

plexity (Tang & Zhuang, 2009).

Discussion

Impacts of N input on biomass production and N2O
emissions

Nitrogen, an indispensable nutrient for plants, is often

the limiting factor for both crop growth and N2O pro-

duction. Generally, crop yields and NPP depend on N

availability; higher productivity normally requires con-

siderable N inputs, especially for soils with poor

nutrient contents (Millar et al., 2010). Many earlier rec-

ommendations on crop N application were made based

on a positive N-yield relationship (e.g., Stanford, 1973).
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However, later N response trials and observations ques-

tioned the poor N-yield relationship because crop yield

may not necessarily increase at excessive N input levels

(Nafziger et al., 2004; Millar et al., 2010). N input may

enhance crop growth at lower N levels, but may reach a

crop yield threshold when the N application is sufficient

(Nafziger et al., 2004). For example in the three-year tri-

als in Michigan, McSwiney & Robertson (2005) observed

that maize grain yields increased in response to N addi-

tions from 0 to 101 kg N ha�1, but then leveled off

when more N was added.

When N availability exceeds the needs by plant and

competing biota, N2O emissions can be substantial and

exhibit exponential responses to the magnitude of N

inputs. It has been found in this study (Fig. 2c) and oth-

ers (McSwiney & Robertson, 2005; Hoben et al., 2011)

that the relationship between N2O flux and N input is

nonlinear, with a lower emission rate at relatively low

N application levels, and a much higher rate when N

input increases. N2O emissions are often simulated as

an exponential function of the N input rate with empiri-

cal models (McSwiney & Robertson, 2005; Van Groeni-

gen et al., 2010), instead of simply applying a linear

model like the IPCC tier 1 approach (De Klein et al.,

2006). That is, with increasing N, the marginal gain of

crop yields decreases while the marginal N2O emissions

increase. The recommended rate of N application can

only be reached at such a point that the marginal benefit

from crop production balances marginal loss or cost via

resource input (e.g., N fertilization) and environment

pollution (e.g., GHG emissions). More attention should

be paid to environmentally or ecologically optimum N

rates from the perspective of ecosystem services (Millar

et al., 2010; Chen et al., 2011a; Davis et al., 2012).

Approximation and simulation in modeling

Agroecosystem models and crop models share expand-

ing common interests, yet they also have their own spe-

cialties. Both groups facilitate the application of models

in a system approach to quantifying crop ecosystem

dynamics. Both provide a framework to integrate knowl-

edge about soil, climate, plant, and management to trans-

fer the understanding from one location to another, from

site to region, supporting decision making with less time

and resources required for analyzing complex systems

(Raich et al., 1991; Jones et al., 2003; Loucks et al., 2005).

However, crop models are mostly used in the agriculture

sector to help understand the impacts of environment

factors and especially management practices on crop

growth and therefore crop yield (grain based) or biomass

(non-grain or not interested in grain), and to provide rec-

ommendations on agricultural management or hazard

protection. Model simulations focus on finer resolutions,

for instance, at site- or field- scale for a specific crop type

(e.g., CERES-Maize for maize, Hodges et al., 1987) or for

specific purposes (e.g., AquaCrop for water manage-

ment, Steduto et al., 2009). In contrast, agroecosystem

models have usually been used to understand the

impacts of natural (e.g., climate) or anthropogenic

activities (e.g., cropping) on ecosystem dynamics (e.g.,

McGuire et al., 2001; Felzer et al., 2009). Crop yields or

biomass production is part of the C cycle. The spatial

scale can be region, nation and even globe (Bondeau

et al., 2007).

In our study, AgTEM models the C and N dynamics

for agroecosystems with vegetation-specific parameters

for each species or crop type. The model structure and

algorithms used to describe the biogeochemical and

physical processes (e.g., photosynthesis, biomass alloca-

tion) are similar, with only minor changes for specific

crops. For example, maize has an extra C pool (grain)

while switchgrass and Miscanthus do not have one. Veg-

etation-specific parameters calibrated with observational

data were used to capture the magnitude of differences

among crops. Some of these parameters can be found

from either experiment-based models or crop models

(e.g., Tables 3 and 4). Management practices such as

irrigation and fertilization were considered in AgTEM,

and grain and biomass harvest were estimated.

In the validation and sensitivity analyses, we used the

annual total value at multiple sites instead of daily

fluxes from a single site to evaluate the NPP and N2O

fluxes. We also combined estimates of three species,

maize, switchgrass, and Miscanthus, instead of making

separate calculations. In the agroecosystem model, bio-

mass (e.g., grain) is estimated based on NPP, a large-

scale and long-term average quantity considering both

natural and anthropogenic effects. In comparison with

crop models, crop yields are small-scale and short-term

results of G 9 E 9 M (gene/species 9 environ-

ment 9 management) interactions. Therefore, using

agroecosystem models to estimate small-scale C and N

dynamics of crop ecosystems, by calibrating parameters

to capture short-term (e.g., day-by-day) fluxes, might

result in high uncertain ecosystem dynamics (Bell et al.,

2012). In addition, observational data might not be in

agreement between experiments or repeated samples as

a result of measurement uncertainty such as ground dis-

turbance, investigator biases, method divergences and

laboratory requirement differences (M€uller & H€oper,

2004; Kessel et al., 2013). In this study, for example, the

N2O experiments collected gas samples at different time

intervals during various time courses (e.g., McSwiney &

Robertson, 2005; Omonode et al., 2011) at weekly (Par-

kin & Hatfield, 2010), biweekly (Niki�ema et al., 2011) or

irregular (Hoben et al., 2011) time steps. Frequency, tim-

ing and quantity of N fertilization may affect daily N2O
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fluxes significantly (Mosier, 1994), and the N2O varia-

tions could be principally due to the degree of coinci-

dence of fertilizer application and major rainfall events

(Dobbie et al., 1999). It is therefore useful to use seasonal

or annual total N2O emissions from several years’ data

from a certain ecosystem in a variable climate to obtain

a robust estimate of mean N2O fluxes (Dobbie et al.,

1999).

Estimation uncertainties and future needs

The discrepancies between modeled and observed NPP

and N2O come from several sources of uncertainties.

Imperfect representation of processes (structural uncer-

tainty) and limited knowledge of parameter value

(parameter uncertainty) in a model constitute model

uncertainty (Loucks et al., 2005). In addition, AgTEM

only considers irrigation and fertilization in terms of

agricultural management. Tillage, crop rotation, crop

straw management that affect the biomass and N2O

emissions (Halvorson et al., 2008; Liu et al., 2011), how-

ever, were not considered. This is partly because of the

difficulty to quantify the spatial variability of human

activities due to a lack of consistent evidence (Millar

et al., 2010), and no spatially explicit data concerning

these management practices are available for regional

simulations (Felzer et al., 2004). Input data are another

source of uncertainty. First, the observational data could

be biased due to experimental uncertainty. Compared

with maize, there are less data for switchgrass and Mi-

scanthus for model validation. More observational data

will help to parameterize and validate AgTEM at loca-

tions under different environmental conditions (e.g.,

Europe and China). The forcing data for model simula-

tions were collected from various sources, thus may not

represent local environmental conditions. For example,

the temperature and precipitation data used in AgTEM

were obtained from the ECMWF reanalysis database.

The data may be suitable for regional estimation, but

not accurate for site-level simulations (Dee et al., 2011).

Thus, local climate, soil and vegetation data at the site

are desirable.

Uncertainty cannot be removed but can be narrowed,

and the model can be improved. From the perspective

of observation, better estimates can be achieved via ded-

ication to cross-site experimental research that are of

considerable long period with appropriate time inter-

vals during sufficient time courses (e.g., N2O), covering

various climate and management (Dalal et al., 2003).

The ecosystem C budget quantification can be improved

using eddy flux data (e.g., Chen et al., 2011b). In this

study, however, the NCE data of crop ecosystems are

not available. Among the many Ameriflux sites (http://

ameriflux.ornl.gov/), only a very limited number of

sites cover croplands (IGBP) with ecosystem C balance

data (e.g., NEE, net ecosystem exchange). There are only

two sites listed (Rosemount G21 Conventional Manage-

ment Corn Soybean Rotation/US-Ro1, Minnesota; Mead

Irrigated Rotation/US-Ne2, Nebraska) covering maize

croplands that can be potentially used for AgTEM.

However, the observed fluxes at these sites measure the

maize–soybean rotation system, which did not well rep-

resent continuous maize ecosystems. Thus, Ameriflux

data were not used in this study. Continuous efforts in

the maize-, switchgrass-, and Miscanthus-based ecosys-

tem flux measurements, together with agronomic

observations (e.g., yield, management) (e.g., Suyker

et al., 2004) should be made to improve the model

performance.

Our understanding about the underlying ecophysio-

logical and biogeochemical processes shapes the way we

interpret and model agroecosystems. Improved observa-

tional data will help calibrate and validate models. The

AgTEM, as well as many other agroecosystem models

can be improved using more data. These models can be

appropriately extrapolated to regional scales when they

are well calibrated and validated (e.g., McGuire et al.,

2001; Bondeau et al., 2007). The developed AgTEM can

be used to quantify C and N dynamics of maize, switch-

grass and Miscanthus ecosystems at regional scales.

Acknowledgement

The authors thank Dr. Wen Sun and Ms. Jayne Piepenburg for
proofreading the manuscript. The authors are also thankful to
anonymous reviewers for their valuable and constructive com-
ments which have led to a significant improvement to the
manuscript. Computing is supported by Rosen Center for
Advanced Computing (RCAC) at Purdue University. This
study is supported through projects funded by the NASA Land
Use and Land Cover Change Program (NASA-NNX09AI26G),
Department of Energy (DE-FG02-08ER64599), the NSF Division
of Information & Intelligent Systems (NSF-1028291), and the
NSF Carbon and Water in the Earth Program (NSF-0630319).

References

Adviento-Borbe MAA, Haddix ML, Binder DL, Walters DT, Dobermann A (2007)

Soil greenhouse gas fluxes and global warming potential in four high-yielding

maize systems. Global Change Biology, 13, 1972–1988.

Adviento-Borbe MAA, Kaye JP, Bruns MA, Mcdaniel MD, Mccoy M, Harkcom S

(2010) Soil greenhouse gas and ammonia emissions in long-term maize-based

cropping systems. Soil Science Society of America Journal, 74, 1623.

Atkinson KA (1989) An Introduction to Numerical Analysis. John Wiley & Sons, New

York.

Behnke GD, David MB, Voigt TB (2012) Greenhouse fas emissions, nitrate leaching,

and biomass yields from production of Miscanthus 9 giganteus in Illinois, USA.

BioEnergy Research, 5, 801–813.

Bell MJ, Jones E, Smith J et al. (2012) Simulation of soil nitrogen, nitrous oxide emis-

sions and mitigation scenarios at 3 European cropland sites using the ECOSSE

model. Nutrient Cycling in Agroecosystems, 92, 161–181.

Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and cli-

mate change. In: Sustainable Agriculture, Vol 2 (eds E Lichtfouse, M Hamelin, M

Navarrete, P Debaeke), pp. 365–468. Springer, New York.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755

MODELING C AND N IN BIOENERGY ECOSYSTEMS 753



www.manaraa.com

Bird I, Cornelius M, Keys A (1977) Effects of temperature on photosynthesis by

maize and wheat. Journal of Experimental Botany, 28, 519–524.

Bondeau A, Smith PC, Zaehle S et al. (2007) Modelling the role of agriculture for the

20th century global terrestrial carbon balance. Global Change Biology, 13, 679–706.

Bradbury N, Whitmore A, Hart P, Jenkinson D (1993) Modelling the fate of nitrogen

in crop and soil in the years following application of 15N-labelled fertilizer to

winter wheat. The Journal of Agricultural Science, 121, 363–380.

Butcher JC (2008) Numerical Methods for Ordinary Differential Equations. John Wiley &

Sons, Chichester.

Chen J, Huang Y, Tang Y (2011a) Quantifying economically and ecologically opti-

mum nitrogen rates for rice production in south-eastern China. Agriculture, Eco-

systems & Environment, 142, 195–204.

Chen M, Zhuang Q, Cook DR et al. (2011b) Quantification of terrestrial ecosystem

carbon dynamics in the conterminous United States combining a process-based

biogeochemical model and MODIS and AmeriFlux data. Biogeosciences, 8, 2665–

2688.

Cheney W, Kincaid D (1985) Numerical Methods and Computing. Brooks/Col Publish-

ing Co., Monterey, CA.

Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for

energy in Europe and its potential contribution to decreasing fossil fuel carbon

emissions. Global Change Biology, 10, 509–518.

Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop,

Miscanthus. Global Change Biology, 13, 2296–2307.

Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from

Australian agricultural lands and mitigation options: a review. Soil Research, 41,

165–195.

Davis SC, Parton WJ, Grosso SJD, Keough C, Marx E, Adler PR, Delucia EH (2012)

Impact of second-generation biofuel agriculture on greenhouse-gas emissions in

the corn-growing regions of the US. Frontiers in Ecology and the Environment, 10,

69–74.

De Klein C, Novoa RSA, Ogle S et al. (2006) N2O emissions from managed soils, and

CO2 emissions from lime and urea application. In: 2006 IPCC Guidelines for

National Greenhouse Gas Inventories (eds Eggleston HS, Buendia L, Miwa K, Ngara

T, Tanabe K), pp. 11.1–11.54. IGES, Japan.

Dee D, Uppala S, Simmons A et al. (2011) The ERA-Interim reanalysis: configuration

and performance of the data assimilation system. Quarterly Journal of the Royal

Meteorological Society, 137, 553–597.

Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ (2010) Estimating uncertainty in N2O

emissions from U.S. cropland soils. Global Biogeochemical Cycles, 24, GB1009.

Deryng D, Sacks WJ, Barford CC, Ramankutty N (2011) Simulating the effects of cli-

mate and agricultural management practices on global crop yield. Global Biogeo-

chemical Cycles, 25, GB2006.

Di Vittorio AV, Anderson RS, White JD, Miller NL, Running SW (2010) Develop-

ment and optimization of an Agro-BGC ecosystem model for C4 perennial

grasses. Ecological modelling, 221, 2038–2053.

Diffenbaugh NS, Hertel TW, Scherer M, Verma M (2012) Response of corn markets

to climate volatility under alternative energy futures. Nature Climate Change, 2,

514–518.

Dobbie K, Mctaggart I, Smith K (1999) Nitrous oxide emissions from intensive agri-

cultural systems: variations between crops and seasons, key driving variables,

and mean emission factors. Journal of Geophysical Research, 104, 26891–26899.

Esser G (1995) Contribution of nonsoon Asia to the carbon budget of the biosphere,

past and future. In: Global Change and Terrestrial Ecosystems in Monsoon Asia (eds

Hirose T, Walker BH). Vegemtio, 121, pp. 175–188. Kluwer Academic Publishers,

Belgium.

Fargione J, Plevin RJ, Hill JD (2010) The ecological impact of biofuels. Annual Review

of Ecology, Evolution, and Systematics, 41, 351–377.

Farrell AE, Plevin RJ, Turner BT, Jones AD, O’hare M, Kammen DM (2006) Ethanol

can contribute to energy and environmental goals. Science, 311, 506–508.

Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004) Effects of ozone

on net primary production and carbon sequestration in the conterminous United

States using a biogeochemistry model. Tellus B, 56, 230–248.

Felzer BS, Cronin TW, Melillo JM, Kicklighter DW, Schlosser CA (2009) Importance

of carbon-nitrogen interactions and ozone on ecosystem hydrology during the

21st century. Journal of Geophysical Research, 114, G01020.

Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT, Rasnake M, Reynolds JH

(2006a) Long-term yield potential of switchgrass-for-biofuel systems. Biomass and

Bioenergy, 30, 198–206.

Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT, Rasnake M, Reynolds JH

(2006b) Switchgrass production for the upper southeastern USA: influence of cul-

tivar and cutting frequency on biomass yields. Biomass and Bioenergy, 30, 207–213.

Grassini P, Cassman KG (2012) High-yield maize with large net energy yield and

small global warming intensity. Proceedings of the National Academy of Sciences,

109, 1074–1079.

Halvorson AD, Mosier AR, Reule CA, Bausch WC (2006) Nitrogen and tillage effects

on irrigated continuous corn yields. Agronomy Journal, 98, 63.

Halvorson AD, Del Grosso SJ, Reule CA (2008) Nitrogen, tillage, and crop rotation

effects on nitrous oxide emissions from irrigated cropping systems. Journal of

Environmental Quality, 37, 1337–1344.

Halvorson AD, Del Grosso SJ, Alluvione F (2010) Tillage and inorganic nitrogen

source effects on nitrous oxide emissions from irrigated cropping systems. Soil

Science Society of America Journal, 74, 436.

Hastings A, Clifton-Brown J, Wattenbach M, Mitchell C, Smith P (2009) The develop-

ment of MISCANFOR, a new Miscanthus crop growth model: towards more

robust yield predictions under different climatic and soil conditions. GCB Bioener-

gy, 1, 154–170.

Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of

two candidate C4 perennial biomass crops in relation to nitrogen, temperature

and water. Biomass and Bioenergy, 27, 21–30.

Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land:

the potential of Miscanthus. Global Change Biology, 14, 2000–2014.

Henault C, Bizouard F, Laville P, Gabrielle B, Nicoullaud B, Germon JC, Cellier P

(2005) Predicting in situ soil N2O emission using NOE algorithm and soil data-

base. Global Change Biology, 11, 115–127.

Hicke JA, Lobell DB (2004) Spatiotemporal patterns of cropland area and net pri-

mary production in the central United States estimated from USDA agricultural

information. Geophysical Research Letters, 31, L20502.

Hicke JA, Lobell DB, Asner GP (2004) Cropland area and net primary production com-

puted from 30 years of USDA agricultural harvest data. Earth Interactions, 8, 1–20.

Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP (2011) Nonlinear nitrous oxide

(N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest.

Global Change Biology, 17, 1140–1152.

Hodges T, Botner D, Sakamoto C, Hays Haug J (1987) Using the CERES-Maize

model to estimate production for the US Cornbelt. Agricultural and Forest Meteo-

rology, 40, 293–303.

Huang Y, Yu Y, Zhang W et al. (2009) Agro-C: a biogeophysical model for simulat-

ing the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 149,

106–129.

Jager HI, Baskaran LM, Brandt CC, Davis EB, Gunderson CA, Wullschleger SD

(2010) Empirical geographic modeling of switchgrass yields in the United States.

GCB Bioenergy, 2, 248–257.

Jones JW, Hoogenboom G, Porter C et al. (2003) The DSSAT cropping system model.

European Journal of Agronomy, 18, 235–265.

Keating B, Robertson M, Muchow R, Huth N (1999) Modelling sugarcane production

systems I. Development and performance of the sugarcane module. Field Crops

Research, 61, 253–271.

Kessel C, Venterea R, Six J, Adviento-Borbe MA, Linquist B, Groenigen KJ (2013)

Climate, duration, and N placement determine N2O emissions in reduced tillage

systems: a meta-analysis. Global Change Biology, 19, 33–44.

Kim SH, Reddy V (2004) Simulating maize development using a nonlinear tempera-

ture response model. In: ‘“New directions for a diverse planet”, Proceedings of the 4th

International Crop Science Congress’. (ed. Fischer R). Brisbane, Australia, 26 Septem-

ber - 1 October 2004.

Kiniry JR, Williams J, Gassman PW, Debaeke P (1992) A general, process-oriented

model for two competing plant species. Transactions of the ASAE, 35, 801–810.

Kucharik CJ (2003) Evaluation of a process-based agro-ecosystem model (Agro-IBIS)

across the US corn belt: simulations of the interannual variability in maize yield.

Earth Interactions, 7, 1–33.

Leakey A, Bernacchi C, Dohleman F, Ort D, Long S (2004) Will photosynthesis of

maize (zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres?

An analysis of diurnal courses of CO2 uptake under free-air concentration enrich-

ment (FACE). Global Change Biology, 10, 951–962.

Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and

current status of perennial rhizomatous grasses as energy crops in the US and

Europe. Biomass and Bioenergy, 25, 335–361.

Liu C, Wang K, Meng S et al. (2011) Effects of irrigation, fertilization and crop straw

management on nitrous oxide and nitric oxide emissions from a wheat–maize

rotation field in northern China. Agriculture, Ecosystems & Environment, 140,

226–233.

Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute

transport models: overview and application. Journal of Contaminant Hydrology, 7,

51–73.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755

754 Z. QIN et al.



www.manaraa.com

Loucks DP, Van Beek E, Stedinger JR, Dijkman JPM, Villars MT (2005) Water

Resources Systems Planning and Management: An Introduction to Methods, Models and

Applications. UNESCO, Paris.

McGowan A, Inouye J, Rice C (2012) Nitrous Oxide Emissions in Different Biofuel Crop-

ping Systems. Available at: http://www.idahoepscor.org/Uploads/45_N2O%

20EPSCOR%20posterfinal.pdf (accessed 5 December 2012).

McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore B III, Voro-

smarty CJ (1992) Interactions between carbon and nitrogen dynamics in estimat-

ing net primary productivity for potential vegetation in North America. Global

Biogeochemical Cycles, 6, 101–124.

McGuire AD, Sitch S, Clein JS et al. (2001) Carbon balance of the terrestrial biosphere

in the twentieth century: analyses of CO2, climate and land use effects with four

process-based ecosystem models. Global Biogeochemical Cycles, 15, 183–206.

McMaster GS, Wilhelm W (1997) Growing degree-days: one equation, two interpre-

tations. Agricultural and Forest Meteorology, 87, 291–300.

McSwiney CP, Robertson GP (2005) Nonlinear response of N2O flux to incremental

fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global

Change Biology, 11, 1712–1719.

Melillo JM, Reilly JM, Kicklighter DW et al. (2009) Indirect emissions from biofuels:

How important? Science, 326, 1397.

Meyer MH, Paul J, Anderson NO (2010) Competive ability of invasive Miscanthus

biotypes with aggressive switchgrass. Biological Invasions, 12, 3809–3816.

Millar N, Robertson GP, Grace PR, Gehl RJ, Hoben JP (2010) Nitrogen fertilizer man-

agement for nitrous oxide (N2O) mitigation in intensive corn (Maize) production:

an emissions reduction protocol for US Midwest agriculture. Mitigation and Adap-

tation Strategies for Global Change, 15, 185–204.

Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic dis-

tribution of crop areas, yields, physiological types, and net primary production in

the year 2000. Global Biogeochemical Cycles, 22, 1–19.

Mosier A (1994) Nitrous oxide emissions from agricultural soils. Nutrient Cycling in

Agroecosystems, 37, 191–200.

Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential

and greenhouse gas intensity in irrigated cropping systems in northeastern Colo-

rado. Journal of Environmental Quality, 35, 1584–1598.

M€uller T, H€oper H (2004) Soil organic matter turnover as a function of the soil clay

content: consequences for model applications. Soil Biology and Biochemistry, 36,

877–888.

Nafziger ED, Sawyer JE, Hoeft RG (2004) Formulating N recommendations for corn in

the Corn Belt using recent data. Proceeding of 20th North Central Extension-Indus-

try Conference, Des Moines, IA.790 17–18 Nov. 2004, pp. 5–11. Vol. 20. Int. Potash

and Phosphate Inst., Brookings, SD.

Nielsen RL (2010) The Emergence Process in Corn. Available at: http://www.agry.pur-

due.edu/ext/corn/news/timeless/emergence.html (accessed 15 May 2012).

Niki�ema P, Rothstein DE, Min D-H, Kapp CJ (2011) Nitrogen fertilization of switch-

grass increases biomass yield and improves net greenhouse gas balance in north-

ern Michigan, U.S.A. Biomass and Bioenergy, 35, 4356–4367.

Oliver RJ, Finch JW, Taylor G (2009) Second generation bioenergy crops and climate

change: a review of the effects of elevated atmospheric CO2 and drought on

water use and the implications for yield. GCB Bioenergy, 1, 97–114.

Omonode RA, Smith DR, G�al A, Vyn TJ (2011) Soil nitrous oxide emissions in corn

following three decades of tillage and rotation treatments. Soil Science Society of

America Journal, 75, 152.

Parkin TB, Hatfield JL (2010) Influence of nitrapyrin on N2O losses from soil receiv-

ing fall-applied anhydrous ammonia. Agriculture, Ecosystems & Environment, 136,

81–86.

Pimentel D, Marklein A, Toth MA et al. (2010) Environmental and economic costs of

biofuels. Human Ecology, 37, 349–369.

Prince SD, Haskett J, Steininger M, Strand H, Wright R (2001) Net primary produc-

tion of US Midwest croplands from agricultural harvest yield data. Ecological

Applications, 11, 1194–1205.

Propheter J, Staggenborg S, Wu X, Wang D (2010) Performance of annual and peren-

nial biofuel crops: yield during the first two years. Agronomy Journal, 102, 806–814.

Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X (2011) Carbon consequences and agricul-

tural implications of growing biofuel crops on marginal agricultural lands in

China. Environmental Science & Technology, 45, 10765–10772.

Qin Z, Zhuang Q, Chen M (2012) Impacts of land use change due to biofuel crops

on carbon balance, bioenergy production, and agricultural yield, in the contermi-

nous United States. GCB Bioenergy, 4, 277–288.

Qin Z, Zhuang Q, Zhu X (2013) Carbon and nitrogen dynamics in bioenergy ecosys-

tems: 2. Potential greenhouse gas emissions and global warming intensity in the

conterminous United States. GCB Bioenergy. doi:10.1111/gcbb.12106.

Raich JW, Rastetter EB, Melillo JM et al. (1991) Potential net primary productivity in

South America: application of a global model. Ecological Applications, 1, 399–429.

Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecological

Modelling, 90, 229–244.

Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis.

Plant, Cell & Environment, 30, 1086–1106.

Searchinger T, Heimlich R, Houghton RA et al. (2008) Use of US croplands for biofu-

els increases greenhouse gases through emissions from land-use change. Science,

319, 1238.

Smith P, Smith J, Powlson D et al. (1997) A comparison of the performance of nine

soil organic matter models using datasets from seven long-term experiments.

Geoderma, 81, 153–225.

Smith J, Gottschalk P, Bellarby J et al. (2010) Estimating changes in Scottish soil car-

bon stocks using ECOSSE. I. Model description and uncertainties. Climate

Research, 45, 179–192.

Stanford G (1973) Rationale for optimum nitrogen fertilization in corn production.

Journal of Environmental Quality, 2, 159–166.

Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—The FAO crop model to

simulate yield response to water: I. Concepts and underlying principles. Agron-

omy Journal, 101, 426–437.

Surendran Nair S, Kang S, Zhang X et al. (2012) Bioenergy crop models: descrip-

tions, data requirements, and future challenges. GCB Bioenergy, 4, 620–633.

Suyker A, Verma S, Burba G, Arkebauer T, Walters D, Hubbard K (2004) Growing

season carbon dioxide exchange in irrigated and rainfed maize. Agricultural and

Forest Meteorology, 124, 1–13.

Tang J, Zhuang Q (2009) A global sensitivity analysis and Bayesian inference frame-

work for improving the parameter estimation and prediction of a process-based

Terrestrial Ecosystem Model. Journal of Geophysical Research, 114, D15303.

Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-

diversity grassland biomass. Science, 314, 1598.

Tilman D, Socolow R, Foley JA et al. (2009) Beneficial biofuels—the food, energy,

and environment trilemma. Science, 325, 270–271.

Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010)

Towards an agronomic assessment of N2O emissions: a case study for arable

crops. European Journal of Soil Science, 61, 903–913.

Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus 9 giganteus

production on the Midwest US hydrologic cycle. GCB Bioenergy, 2, 180–191.

Zhuang Q, McGuire A, O’neill K, Harden J, Romanovsky V, Yarie J (2002) Modeling

the soil thermal and carbon dynamics of a fire chronosequence in interior Alaska.

Journal of Geophysical Research, 107, 8147.

Zhuang Q, McGuire A, Melillo J et al. (2003) Carbon cycling in extratropical terres-

trial ecosystems of the Northern Hemisphere during the 20th century: a modeling

analysis of the influences of soil thermal dynamics. Tellus B, 55, 751–776.

Zhuang Q, Qin Z, Chen M (2013) Biofuel, land and water: maize, switchgrass or

Miscanthus? Environmental Research Letters, 8, 015020.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Simulation of nitrification responding to sub-
strate concentration, climate, and soil environment.
Figure S2. Simulation of denitrification responding to sub-
strate concentration and soil environment.
Figure S3. Sensitivity of NPP responding to model input
(�20% change) in different ecosystems.
Figure S4. Sensitivity of N2O responding to model input
(�20% change) in different ecosystems.
Table S1. Variables and parameters used in AgTEM to sim-
ulate soil N dynamics and nitrogen oxide emissions.
Table S2. Values of parameters used to calibrate nitrogen
oxide emissions in AgTEM.
Model S1. Nitrification and denitrification in AgTEM.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 740–755

MODELING C AND N IN BIOENERGY ECOSYSTEMS 755



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


